王开存
职称:特聘教授
研究方向:气候变化
通讯地址:
Email:kcwang@pku.edu.cn
教育经历
2001/09-2004/06 公司物理学院大气科学系,博士
1998/09-2001/07 兰州大学资源环境学院大气科学系,硕士
1994/09-1998/07 兰州大学大气科学系,学士
工作经历
2021/11至今 澳门游戏网站大全(中国)有限公司,教授
2018/06-2021/03 北京师范大学科研院,副经理兼科学技术处处长
2011/01-2021/10 北京师范大学全球变化与地球系统科学研究院,教授,首席科学家(其中2013/12-2021/09任副经理)
2009/12-2010/12 美国德克萨斯大学奥斯汀分校地质系,Research Scientist Associate V
2006/07-2009/11 美国马里兰大学帕克分校地理系,博士后、助理研究教授
2004/06-2007/06 中国科学院大气物理研究所,助理研究员
杂志任职
Geophysical Research Letters, editor
荣誉与奖励
北京师范大学高等公司产品成果奖,二等奖,2021
北京师范大学最受研究生欢迎的十佳教师,2021
北京师范大学课程思政建设优秀课程奖,2021
教育部长江学者奖励计划特聘教授,2018
北京高校优秀共产党员,2017
第十四届中国青年科技奖,2016
国家杰出青年科学基金获得者,2015
北京师范大学十佳师德标兵,2014
北京师范大学优秀共产党员,2014
气候变化研究数据工具和方法(研究生课程)
国家重点研发计划项目,中国东北区域陆—气跨圈层精细化协同观测和遥感反演,2022-2027,项目负责人
国家重点研发计划项目,全球变化驱动下陆表自然与人文要素相互作用及区域表现,2017-2022,项目负责人
国家自然科学基金重点项目,中国陆表气候观测数据的渐变型不均一性,2020-2024,项目负责人
国家杰出青年科学基金,地表能量平衡与气候变化,2016-2020,项目负责人
1. Zhang, Yan, Runze Li, and Kaicun Wang*(2023), Climatology and changes in internal intensity distributions of global precipitation systems over 2001-2020 based on IMERG, Journal of Hydrology, in press.
2. Zhang, Zhengtai, and Kaicun Wang*(2023), Homogenization of observed surface wind speed based on geostrophic wind theory over China from 1970 to 2017, Journal of Climate, in press.
3. Zhang, Yan, and Kaicun Wang*(2023), Mapping the representativeness of precipitation measurements in Mainland China, Environmental Research Letters, 18, 024019.
4. Zhang, Yan, and Kaicun Wang*(2023), Global precipitation system scale increased from 2001 to 2020, Journal of Hydrology, 616:128768.
5. 王开存*,袁慧玲(2023),国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0515应用气象学,大气科学,47(1):230-238.
6. 蔡鸿泽,王开存*(2022),基于最新观测和大气再分析估计全球能量平衡,科学通报,67(35):4263-4280.
7. Fu, Kaiqi, and Kaicun Wang*(2022), Quantifying flash droughts over China from 1980 to 2017,Journal of Geophysical Research Atmospheres, 127(24): e2022JD037152.
8. Li, Runze, Dan Qi, Yan Zhang, Kaicun Wang*(2022), A new pixel-to-object method for evaluating the capability of the GPM IMERG product to quantify precipitation systems, Journal of Hydrology, 2022, 613: 128476.
9. Du, Jizeng, Kaiqi Fu, Baoshan Cui, Kaicun Wang*(2022), Anthropogenic Influences on 2020 Extreme Dry–Wet Contrast over South China, Bulletin of the American Meteorological Society, 103(3): S68-S74.
10. Ma, Qian, Kaicun Wang*, Yanyi He, Liangyuan Su, Qizhong Wu, Han Liu, and Youren Zhang (2022), Homogenized century-long surface incident solar radiation over Japan, Earth System Science Data, 14, 463-477.
11. Mao, Yuna, Guocan Wu, Guangzhi Xu, Kaicun Wang*(2022), Reduction in precipitation seasonality in China from 1960 to 2018, Journal of Climate, 35(1), 227-248.
12. Zhang, Zhengtai, and Kaicun Wang*(2021), Quantifying and adjusting the impact of urbanization on the observed surface wind speed over China from 1985 to 2017, Fundamental Research, 1(6), 785-791.
13. Wu, Guocan, Yun Li, Shun Qin, Yuna Mao, and Kaicun Wang*(2021), Precipitation Unevenness in Gauge Observations and Eight Reanalyses from 1979 to 2018 over China, Journal of Climate, 34(24), 9797–9810.
14. Zhao, Zhe, and Kaicun Wang*(2021), Capability of Existing Drought Indices in Reflecting Agricultural Drought in China, Journal of Geophysical Research: Biogeosciences, 126(8): e2020JG006064.
15. Zhang, Xin, Kaicun Wang*, and Georgiy Kirillin (2021), An automatic method to detect lake ice phenology using MODIS daily temperature imagery, Remote Sensing, 13(14): 2711.
16. Zhang, Yan, and Kaicun Wang* (2021), Global precipitation system size, Environmental Research Letters, 16(5): 054005.
17. Wu, Guocan, and Kaicun Wang* (2021), Observed response of precipitation intensity to dew point temperature over the contiguous US, Theoretical and Applied Climatology, 144: 1349–1362.
18. He, Yanyi, and Kaicun Wang*, and Fei Feng (2021), Improvement of ERA5 over ERA-Interim in simulating surface incident solar radiation throughout China, Journal of Climate, 34(10): 3853–3867.
19. Zhang, Zhengtai, and Kaicun Wang* (2021), The synoptic to decadal variability in the winter surface wind speed over China by the weather regime view, Geophysical Research Letters, 48(6): e2020GL091994.
20. Feng, Fei, and Kaicun Wang* (2021), Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China, Earth System Science Data, 13(3): 907-922.
21. Feng, Fei, and Kaicun Wang* (2021), Merging high-resolution satellite surface radiation data with meteorological sunshine duration observations over China from 1983 to 2017, Remote Sensing, 13(4): 602.
22. Li, Runze, Kaicun Wang*, and Dan Qi (2021), Event-Based Evaluation of the GPM Multi-satellite Merged Precipitation Product from 2014 to 2018 over China: Methods and Results, Journal of Geophysical Research Atmospheres, 126(1): e2020JD033692.
23. Du, Jizeng, Kaicun Wang*, and Baoshan Cui (2021), Attribution of the extreme drought-related risk of wildfires in spring 2019 over Southwest China, Bulletin of the American Meteorological Society, 102(1): S83-S90.
24. He, Yanyi, Kaicun Wang*, and Dan Qi (2021), Roles of anthropogenic forcing and natural variability in the record-breaking low sunshine event in January-February 2019 over the Middle-Lower Yangtze Plain, Bulletin of the American Meteorological Society, 102(1): S75- S81.
25. Jiang, Shaojing, Kaicun Wang*, and Yuna Mao (2020), Rapid local urbanization around most meteorological stations explain the observed daily asymmetric warming rates across China from 1985 to 2017, Journal of Climate, 33(20): 9045–9061.
26. Du, Jizeng, Kaicun Wang*, Baoshan Cui, Shaojing Jiang, Correction of inhomogeneities in observed land surface temperatures over China, Journal of Climate, 33(20): 8885–8902.
27. He, Yanyi, and Kaicun Wang*(2020), Contrast patterns and trends of lapse rates calculated from near-surface air and land surface temperatures in China from 1961 to 2014, Science Bulletin, 65: 1217-1224.
28. He, Yanyi, and Kaicun Wang*(2020), Variability in direct and diffuse solar radiation across China From 1958 to 2017, Geophysical Research Letters, 47, e2019GL084570.
29. Zhang, Xin, Kaicun Wang* and Bertram Boehrer (2020), Variability in observed snow depth over China from 1960 to 2014, Internatonal Journal of Climatology, 40: 3161-3178.
30. An, Ning, Rachel Pinker, Kaicun Wang*, Eric Rogers, and Zhiyan Zuo (2020), Evaluation of Cloud Base Height in the North American Regional Reanalysis Using Ceilometer Observations, International Journal of Climatology, 40: 3161-3178.
31. Chen, Ziyue, Danlu Chen, Chuanfeng Zhao, Mei-po Kwan, Jun Cai, Yan Zhuang, Bo Zhao, Xiaoyan Wang, Bin Chen, Jing Yang, Ruiyuan Li, Bin He, Bingbo Gao, Kaicun Wang*, and Bing Xu* (2020), Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism, Environmental International, 139: 105558.
32. Zhang, Zhengtai, and Kaicun Wang* (2020), Stilling and Recovery of the Surface Wind Speed Based on Observation, Reanalysis, and Geostrophic Wind Theory over China from 1960 to 2017, Journal of Climate, 33: 3989-4008.
33. Zhang, Xin, Kaicun Wang*, Marieke A. Frassl and Bertram Boehrer (2020), Reconstructing six decades of surface temperatures at a shallow lake, Water, 12: 405.
34. Du, Jizeng, Kaicun Wang*, Baoshan Cui, Shaojing Jiang, and Guochan Wu (2020), Attribution of the record-breaking consecutive dry days in winter 2017/18 in Beijing, Bulletin of the American Meteorological Society, 101: S95-S101.
35. Feng, Fei, and Kaicun Wang* (2019), Determining factors of monthly to decadal variability in surface solar radiation in China: evidences from current reanalyses, Journal of Geophysical Research Atmospheres, 124, 9161–9182.
36. Zhang, Zhengtai, and Kaicun Wang*, Deliang Chen, Jianping Li, and Robert Dickinson (2019), Increase in surface friction dominates the observed surface wind speed decline during 1973-2014 in the Northern Hemisphere lands, Journal of Climate, 32, 7421-7435.
37. Jiang, Shaojing, Xuhui Lee, Jiankai Wang, and Kaicun Wang* (2019), Amplified urban heat islands during heat wave periods, Journal of Geophysical Research Atmospheres, 124, 7797–7812.
38. Du, Jizeng, Kaicun Wang*, Shaojing Jiang, and Baoshan Cui (2019), Urban dry island effect mitigated urbanization effect on observed warming in China, Journal of Climate, 32, 5705-5723.
39. Feng, Fei, and Kaicun Wang* (2019), Does the MERRA-2 aerosol reanalysis introduce an improvement in the simulation of surface solar radiation over China?, International Journal of Climatology, 39(3):1305-1318.
40. Zhou, Chunlüe, Kaicun Wang*, Dan Qi, Jianguo Tan (2019), Attribution of a record-breaking heatwave event in summer 2017 over the Yangtze River Delta, Bulletin of the American Meteorological Society, 100, S97-S103.
41. Jiang, Shaojing, and Kaicun Wang* (2018), Exploring the holiday effect on air temperatures, Scientific Reports, 8:17943.
42. Li, Runze, Kaicun Wang*, and Dan Qi (2018), Validating the integrated multi-satellite retrievals for global precipitation measurement in terms of diurnal variability with hourly gauge observations collected at fifty thousand stations in China, Journal of Geophysical Research Atmospheres, 123(18): 10,423-10,442.
43. Zhou, Chunlüe, Yanyi He, and Kaicun Wang*(2018), On the suitability of current atmospheric reanalyses for regional warming studies over China, Atmospheric Chemistry and Physics, 18(11): 8113–8136.
44. He, Yanyi, Kaicun Wang*, Chunlüe Zhou, and Martin Wild (2018), A Revisit of Global Dimming and Brightening Based on the Sunshine Duration, Geophysical Research Letters, 45(9): 4281-4289.
45. Du, Jizeng, Kaicun Wang*, Jiankai Wang, Shaojing Jiang, and Chunlüe Zhou (2018), Diurnal Cycle of Surface Air Temperature within China in Current Reanalyses: Evaluation and Diagnostics, Journal of Climate, 31(11): 4585–4603.
46. Wang, Xiaoyan, Robert E. Dickinson, Liangyuan Su, Chunlüe Zhou, and Kaicun Wang* (2018), PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions, Bulletin of the American Meteorological Society, 99(1): 105-119.
47. Feng, Fei, and Kaicun Wang* (2018), Merging satellite retrievals and reanalyses to produce global long-term and consistent surface incident solar radiation datasets, Remote Sensing, 10(1): 115.
48. Zhou, Chunlüe, Kaicun Wang*, and Dan Qi (2017), Attribution of the July 2016 extreme precipitation event over China’s Wuhan, Bulletin of the American Meteorological Society, 98(12): S107-S112.
49. Zhou, Chunlüe, Kaicun Wang*, and Qian Ma (2017), Evaluation of eight current reanalyses in simulating land surface temperature from 1979 to 2003 in China, Journal of Climate, 30(18): 7379-7398.
50. Zhou, Chunlüe, and Kaicun Wang* (2017), Contrasting Daytime and Nighttime Precipitation Variability between Observations and Eight Reanalysis Products from 1979 to 2014 in China, Journal of Climate, 30: 6443-6464.
51. An, Ning, Kaicun Wang*, Chunlüe Zhou, and Rachel T. Pinker (2017), Observed Variability of Cloud Frequency and Cloud-Base Height within 3600m above the Surface over the Contiguous United States, Journal of Climate, 30: 3725-3742.
52. Zhou, Chunlüe, and Kaicun Wang* (2017), Quantifying the Sensitivity of Precipitation to the Long-Term Warming Trend and Interannual–Decadal Variation of Surface Air Temperature over China, Journal of Climate, 30: 3687-3703.
53. Du, Jizeng, Kaicun Wang *, J. Wang, and Q. Ma (2017), Contributions of surface solar radiation and precipitation to the spatiotemporal patterns of surface and air warming in China from 1960 to 2003, Atmospheric Chemistry and Physics, 17: 4931-4944.
54. Mao, Yuna, and Kaicun Wang * (2017), Comparison of evapotranspiration estimates based on the surface water balance, modified Penman-Monteith model, and reanalysis data sets for continental China, Journal of Geophysical Research Atmospheres, 122: 3228–3244.
55. Wang*, Kaicun, S. Jiang, C. Zhou, and J. Wang (2017), Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network, Journal of Geophysical Research Atmospheres, 122: 2131–2154.
56. Zhou, Chunlüe, and Kaicun Wang * (2016), Land surface temperature over global deserts: Means, variability, and trends, Journal of Geophysical Research Atmospheres, 121: 14,344–14,357.
57. Wang, Xiaoyan, and Kaicun Wang *, and L. Su (2016), Contribution of atmospheric diffusion conditions to the recent improvement in air quality in China, Scientific Reports, 6: 36404.
58. Mao, Yuna, Kaicun Wang *, C. Liu and X. Liu (2016), Water Storage in Reservoirs Built from 1997 to 2014 Significantly Altered the Calculated Evapotranspiration Trends over China, Journal of Geophysical Research Atmospheres, 121(17): 10,097–10,112.
59. Zhou, Chunlüe, and Kaicun Wang * (2016), Spatiotemporal Divergence of Warming Hiatus over Land Based on Mean Temperature of Different Definitions, Scientific Reports, 6: 31789
60. Wang, Xiaoyan, and Kaicun Wang * (2016), Homogenized Variability of Radiosonde-Derived Atmospheric Boundary Layer Height over the Global Land Surface from 1973 to 2014, Journal of Climate, 29(19): 6893-6908.
61. Guo, Li, and Kaicun Wang * (2016), Variability of Tornado Occurrence over the Continental United States since 1950, Journal of Geophysical Research Atmospheres, 121(12): 6943–6953.
62. Zhou, Chunlüe, and Kaicun Wang * (2016), Coldest Temperature Extreme Monotonously Increased and Hottest Extreme Oscillated over Northern Hemisphere Land during Last 114 Years, Scientific Reports, 6: 25721.
63. Zhou, Chunlüe, and Kaicun Wang * (2016), Evaluation of surface fluxes in ERA‐Interim using flux tower data, Journal of Climate, 29(4): 1573-1582
64. Guo, Li, N. An, and Kaicun Wang * (2016) Reconciling the Discrepancy in Ground- and Satellite-Observed Trends in the Spring Phenology of Winter Wheat in China from 1993 to 2008, Journal of Geophysical Research Atmospheres, 121(3): 1027–1042
65. Li, Z., Kaicun Wang *, C. Zhou, and L. Wang (2016). Modelling the true monthly mean temperature from continuous measurements over global land, International Journal of Climatology, 36(4): 2103-2110
66. Zhou, Chunlüe, and Kaicun Wang * (2016), Biological and Environmental Controls on Evaporative Fractions at AmeriFlux Sites, Journal of Applied Meteorology and Climatology, 55(1): 145-161.
67. Ma, Q., Kaicun Wang *, M. Wild (2015), Impact of geolocations of validation data on the evaluation of surface incident shortwave radiation from earth system models, Journal of Geophysical Research Atmospheres, 120 (14): 6825–6844.
68. Wang*, Kaicun, Q. Ma, Z. Li, and J. Wang (2015), Decadal Variability of Surface Incident Solar Radiation over China: Observations, Satellite Retrievals, and Reanalyses, Journal of Geophysical Research Atmospheres, 120: 6500–6514.
69. Wang*, Kaicun, and Chunlüe Zhou (2015), Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature, Scientific Reports, 5: 12324.
70. An, N., and Kaicun Wang* (2015), A comparison of MODIS-derived cloud amount with surface observations at five SURFRAD sites, Journal of Applied Meteorology and Climatology, 54 (5): 1009-1020.
71. Wang, L. and Kaicun Wang* (2015), Impacts of DEM uncertainty of estimated solar radiation and extracted river network, Bulletin of the American Meteorological Society, 96: 297-304.
72. Wang*, Kaicun (2014), Measurement biases explain discrepancies between observed and simulated decadal variability of surface incident solar radiation, Scientific Reports, 4: 6144.
73. Wang*, Kaicun, Q. Ma, X. Wang, and M. Wild (2014), Urban impacts on mean and trend of surface incident solar radiation, Geophysical Research Letters, 41(13): 4664–4668.
74. Wang, X., and Kaicun Wang* (2014), Estimation of atmospheric mixing layer height from radiosonde data, Atmospheric Measurement Techniques, 7: 1701–1709.
75. Ma, Q., Kaicun Wang*, and M. Wild (2014), Evaluations of atmospheric downward longwave radiation from 44 coupled general circulation models of CMIP5, Journal of Geophysical Research Atmospheres, 119(8): 4486-4497.
76. Wang*, Kaicun (2014), Sampling biases in datasets of historical mean air temperature over land, Scientific Reports, 4: 4637.
77. Wang*, Kaicun, and R. E. Dickinson (2013), Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses, Reviews of Geophysics, 51: 150–185.
78. Wang*, Kaicun, and R. E. Dickinson (2013), Contribution of solar radiation to decadal temperature variability over land, Proceedings of National Academy of Science of the United States of America, 110(37): 14877–14882.
79. Wang*, Kaicun, R. E. Dickinson, Q. Ma, J. A. Augustine, and M. Wild (2013), Measurement methods affect the observed global dimming and brightening, Journal of Climate, 26(12): 4112-4120.
80. Wang*, Kaicun, R. E. Dickinson, M. Wild, S. Liang (2012), Atmospheric impacts on climatic variability of surface incident solar radiation, Atmospheric Chemistry and Physics, 12(20): 9581-9592.
81. Wang*, Kaicun, R. E. Dickinson, L. Su, and K. E. Trenberth (2012), Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011, Atmospheric Chemistry and Physics,12(19): 9387-9398.
82. Wang*, Kaicun, R. E. Dickinson, and S. L. Liang (2012), Global atmospheric evaporative demand over and from 1973 to 2008, Journal of Climate, 25(23): 8353-8361.
83. Wang*, Kaicun, and R. E. Dickinson (2012), A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability, Reviews of Geophysics, 50: RG2005.
84. Wang*, Kaicun, J. Augustine, and R. E. Dickinson (2012), Critical assessment of surface incident solar radiation observations collected by SURFRAD, USCRN and AmeriFlux networks from 1995 to 2011, Journal of Geophysical Research Atmospheres, 117: D23105.
85. Wang*, Kaicun, S. Liang, C. L. Schaaf, and A. H. Strahler (2010), Evaluation of moderate resolution imaging spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites, Journal of Geophysical Research Atmospheres, 115: D17107.
86. Wang*, Kaicun, R. E. Dickinson, M. Wild, and S. Liang (2010), Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. method development, Journal of Geophysical Research Atmospheres, 115: D20112.
87. Wang*, Kaicun, R. E. Dickinson, M. Wild, and S. Liang (2010), Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results, Journal of Geophysical Research Atmospheres, 115: D20113.
88. Wang*, Kaicun, R. E. Dickinson, and S. Liang (2009), Clear sky visibility has decreased over land globally from 1973 to 2007, Science, 323: 1468-1470.
89. Wang*, Kaicun, and S. Liang (2009), Estimation of daytime net radiation from shortwave radiation measurements and meteorological observations, Journal of Applied Meteorology and Climatology, 48: 634-643.
90. Wang*, Kaicun, and S. Liang (2009), Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites, Remote Sensing of Environment, 113: 1556-1565.
91. Wang*, Kaicun, and S. Liang (2009), Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008, Journal of Geophysical Research Atmospheres, 114: D19101.
92. Wang*, Kaicun, and S. Liang (2008), An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture, Journal of Hydrometeorology, 9(4): 712-727.
93. Wang*, Kaicun, R. E. Dickinson, and S. Liang (2008), Observational evidence on the effects of clouds and aerosols on net ecosystem exchange and evapotranspiration, Geophysical Research Letters, 35: L10401.
94. Wang*, Kaicun, P. Wang, Z. Li, M. Cribb, and M. Sparrow (2007), A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, Journal of Geophysical Research Atmospheres, 112: D15107.
95. Wang*, Kaicun, Z. Wan, P. Wang, J. Liu, and M. Sparrow (2007), Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semi-desert site on the western Tibetan Plateau, International Journal of Remote Sensing, 28: 2549-2565.
96. Wang*, Kaicun, J. Wang, P. Wang, M. Sparrow, J. Yang, and H. Chen (2007), Influences of urbanization on surface characteristics as derived from the Moderate-Resolution Imaging Spectroradiometer: A case study for the Beijing metropolitan area, Journal of Geophysical Research Atmospheres, 112: D22S06.
97. Wang*, Kaicun, Z. Li, and M. Cribb (2006), Estimation of evaporative fraction from a Combination of day and night land surface temperatures and NDVI: a new method to determine the Priestly-Taylor parameter, Remote Sensing of Environment, 102: 293-305.
98. Wang*, Kaicun, X. Zhou, J. Liu, and M. Sparrow (2005), Estimating surface solar radiation over complex terrain using moderate-resolution satellite sensor data, International Journal of Remote Sensing, 26(1): 47-58.
99. Wang*, Kaicun, Z. Wan, P. Wang, M. Sparrow, J. Liu, et al. (2005), Estimation of surface long wave radiation and broadband emissivity using moderate resolution imaging spectroradiometer (MODIS) land surface temperature/emissivity products, Journal of Geophysical Research Atmospheres, 110: D11109.
100.Wang*, Kaicun, P. Wang, J. Liu, M. Sparrow, S. Haginoya, et al. (2005), Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau, Boundary-Layer Meteorology, 116(1): 117-129.
101.Wang*, Kaicun, J. Liu, X. Zhou, M. Sparrow, M. Ma, et al. (2004), Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau, Journal of Geophysical Research Atmospheres, 109: D05107.